
Beyond the Constraints: Unleashing the 
Potential of Low-Cost Robots and 
Standardizing Robotics Performance 
Assessment

Oct. 31, 2023
Jason Jabbour
CS PhD Student @ Harvard University

1

Boston University 
CS599N1: Robot Brains! Designing Computing Systems for Robotics



Roadmap

2

● Part 1 - Tiny Robot Learning + Class Discussion (9:35am)

● Part 2  - RobotPerf + Class Discussion (10:10am)
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Part 1: Tiny Robot Learning
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Problem Motivation
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Boston Dynamics Spot 
Quadruped Robot

http://www.youtube.com/watch?v=aFuA50H9uek
http://www.youtube.com/watch?v=Ve9kWX_KXus


Problem Motivation

6Unitree Go2 and B1 at iROS 2023

https://docs.google.com/file/d/12cEg2LJgIqEMWjVXQ6iPIVZ2YcTANVyl/preview
https://docs.google.com/file/d/1yft5D1KaVFZOWje05jdCGaxCe-ji44XQ/preview
https://docs.google.com/file/d/1mmKPFaqEG5FPna-3Q4qs3aLQ-RcNmjOm/preview
https://docs.google.com/file/d/1GnYf4rqZPw3wZUT40BFmyh7eT21wUyQS/preview


Methods for Locomotion
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Model Predictive Control (MPC) Reinforcement Learning (RL)



Methods for Locomotion
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Model Predictive Control (MPC) Reinforcement Learning (RL)

What are some advantages and 
disadvantages of each method?



RL & Natural Gaits
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http://www.youtube.com/watch?v=IxGlK3Kph2A
http://www.youtube.com/watch?v=J84yEQPT1LI


RL & Natural Gaits
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What causes this type of RL 
behavior?

http://www.youtube.com/watch?v=IxGlK3Kph2A
http://www.youtube.com/watch?v=J84yEQPT1LI


Imitation Learning

11https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf

https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf


Imitation Learning
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https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf


Imitation Learning & Natural Gaits
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http://www.youtube.com/watch?v=lKYh6uuCwRY


Quadruped Comparison
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Can you spot some 
differences?

Unitree A1 Petoi Bittle



Quadruped Comparison: Price
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Unitree A1 Petoi BittleUnitree Go2Boston Dynamics 
Spot



Quadruped Comparison: Price
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Unitree A1 Petoi BittleUnitree Go2
Boston Dynamics 

Spot

~ $2.5K

> $
10

0k

~ $10
k

$299



Quadruped Comparison: Price
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Unitree A1 Petoi BittleUnitree Go2
Boston Dynamics 

Spot

~ $2.5K

> $
10

0k

~ $10
k

$299

Ultra Low Cost
33x



Quadruped Comparison: Size
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Unitree A1 Petoi Bittle

1.64 ft x 0.98 ft x 1.31 ft 7.8 in x 4.3 in x 4.3 in

2.5x



Quadruped Comparison: Compute

19

Unitree A1 Petoi Bittle

Standard Compute: ARM Cortex-A72 2.5GHz Nyboard V1 ATMega328P 20MHz

Additional Compute: NVIDIA TX2 1.3GHz Raspberry Pi Zero 2W 1GHz1.3x

125x



Quadruped Full Comparison
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Goal
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Demonstrate how existing state-of-the-art imitation 
learning pipelines can be modified and augmented to 
support ultra-low-cost, constrained robot platforms



Challenges
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Observability ControllabilityComputation



Adjustments
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Adjustments
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● IMU Data
● Motor Angles 
● Previous Actions 
● Future Reference 

Motion Frames

● Joint Angles
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Adjustments
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● IMU Data
● Motor Angles 
● Previous Actions 
● Future Reference 

Motion Frames

● Joint Angles

● IMU Data
● Previous Actions 

● Graph Freezing
● Float-16 Quantization

10x



Adjustments
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Tiny Motion Imitation Pipeline
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Tiny Motion Imitation Pipeline
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PPO1 for 60M 
Timesteps



Tiny Motion Imitation Pipeline
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Quantized and Frozen Graph but without dimensionality reduction 



Deployment

32

Nyboard V1 
ATMega328P

Raspberry Pi 
Zero 2W



Video Demo 
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http://www.youtube.com/watch?v=jloya0TOzWA


Current State-of-the-Art

34https://arxiv.org/pdf/2108.10470.pdf

https://arxiv.org/pdf/2108.10470.pdf


● We rely heavily on simulation for training, but transferring these policies to 
the real world is still challenging. How big of a role do you think simulation 
can realistically play in training robots compared to real world training? What 
innovations might help close the sim2real gap?

● The locomotion skills in this paper are learned through imitation and 
reinforcement learning. Do you think techniques from general artificial 
intelligence like reasoning could complement these methods for robot 
training?

● Can you think of any other potential applications for capable yet affordable 
robots? What opportunities and risks might this create?

Questions for Thought
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Part 2: RobotPerf
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Introduction
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Motivation

Real-Time 
Systems

Heterogeneous 
Hardware

Moore’s Law & 
Dennard Scaling

Robotic Applications
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Overview
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Overview
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Overview
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ROS 2
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Overview

Industry- 
Grade

Decentralized 
Framework
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Background

OS

DDS

rclcpp/rclpy

rcl

Computational Graphs

rmw

Perception 
Nodes

Planning 
Nodes

Control 
Nodes
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Overview
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Overview
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Related Work
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RobotPerf Principles
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RobotPerf Principles
Non-Functional 

Performance 
Testing
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Performance Testing Types

Functional Non-Functional 
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RobotPerf Principles
Non-Functional 

Performance 
Testing

Real-Time 
Metrics
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Real-Time Metrics

Latency PowerThroughput
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RobotPerf Principles
Non-Functional 

Performance 
Testing

Flexible 
Methodology 

Real-Time 
Metrics
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Methodology Types

Grey Box Testing
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Methodology Types

Grey Box Testing

Black Box Testing
56



Methodology Types

Grey Box Testing

Black Box Testing
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Tracing Granularity

Valid Tracer

Event Types

Code Modification

Standard ROS 2 APIs

Post-Processing



RobotPerf Principles
Non-Functional 

Performance 
Testing

Adaptability

Flexible 
Methodology 

Real-Time 
Metrics
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Adaptability

Playback 
Node

Data
Loader

Sensor 
Topics

Pre-processed 
Topics

Pre-processing 
Nodes

Input 
Tracepoint 

Node

Input Topics

Nodes of 
Interest

Output 
Tracepoint 

Node
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Point Cloud
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Depth to 
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RobotPerf Principles
Non-Functional 

Performance 
Testing

Adaptability

Flexible 
Methodology 

Real-Time 
Metrics

Reproducibility
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Reproducibility

Playback 
Node

Data
Loader

Sensor 
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Pre-processed 
Topics

Pre-processing 
Nodes

Input 
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Node
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Output 
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https://github.com/NVIDIA-ISAAC-ROS/ros2_benchmark 61



RobotPerf Principles
Non-Functional 

Performance 
Testing

Adaptability

Portability

Flexible 
Methodology 

Real-Time 
Metrics

Reproducibility
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RobotPerf Results
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Benchmarks
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Takeaways
 

Quantitative Approach to 
Hardware Selection

Assessment of Acceleration 
Benefits

Representative Assessment of 
Heterogeneous Hardware
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Hardware Selection
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Representative Assessment
 

Grey Box

Black Box
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Representative Assessment
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Acceleration Benefits
 

69



Thanks!
jasonjabbour@g.harvard.edu
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● What’s the importance of benchmarks? Can you think of some benchmarks 
that have helped move their field forward?

● Are there any specific robotic algorithms that should be incorporated into 
RobotPerf?

● Does RobotPerf miss or not take into consideration any aspects of the 
robotics pipeline that might be useful to study? What could be the next steps 
of RobotPerf?

Questions for Thought
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