Beyond the Constraints: Unleashing the Potential of Low-Cost Robots and **Standardizing** Robotics Performance Assessment

Boston University CS599N1: Robot Brains! Designing Computing Systems for Robotics

Oct. 31, 2023

Jason Jabbour

CS PhD Student @ Harvard University

- Part 1 Tiny Robot Learning + Class Discussion (9:35am)
- Part 2 **RobotPerf** + Class Discussion (10:10am)

About Me

Bifurcation Diagram Plotting µ(0) and µ(t)

30

Construction of the sent of th

Mobius Band Shape

-0.2

x2

Part 1: Tiny Robot Learning

Problem Motivation

Boston Dynamics Spot Quadruped Robot

Problem Motivation

Unitree Go2 and B1 at iROS 2023

Methods for Locomotion

Model Predictive Control (MPC)

Reinforcement Learning (RL)

Methods for Locomotion

Model Predictive Control (MPC)

Reinforcement Learning (RL)

What are some advantages and disadvantages of each method?

RL & Natural Gaits

RL & Natural Gaits

What causes this type of RL behavior?

Imitation Learning

Learning Agile Robotic Locomotion Skills by Imitating Animals

Xue Bin Peng^{*†}, Erwin Coumans^{*}, Tingnan Zhang^{*}, Tsang-Wei Edward Lee^{*}, Jie Tan^{*}, Sergey Levine^{*†} *Google Research, [†]University of California, Berkeley Email: xbpeng@berkeley.edu, {erwincoumans,tingnan,tsangwei,jietan}@google.com, svlevine@eecs.berkeley.edu

Fig. 1. Laikago robot performing locomotion skills learned by imitating motion data recorded from a real dog. **Top:** Motion capture data recorded from a dog. **Middle:** Simulated Laikago robot imitating reference motions. **Bottom:** Real Laikago robot imitating reference motions.

Abstract—Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics. While manually-designed controllers have been able to emulate many

Imitation Learning

https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf

Imitation Learning & Natural Gaits

Quadruped Comparison

Unitree A1

Petoi Bittle

Can you spot some differences?

Quadruped Comparison: Price

Boston Dynamics Spot

Unitree A1

Unitree Go2

Petoi Bittle

Quadruped Comparison: Price

Boston Dynamics Spot

Unitree A1

40/cz

Unitree Go2

Petoi Bittle

Quadruped Comparison: Price

Quadruped Comparison: Size

1.64 ft x 0.98 ft x 1.31 ft

Petoi Bittle

7.8 in x 4.3 in x 4.3 in

2.5x

Quadruped Comparison: Compute

Unitree A1

Petoi Bittle

Standard Compute: ARM Cortex-A72 2.5GHz 125x Nyboard V1 ATM

1.3x

Additional Compute: NVIDIA TX2 1.3GHz

Nyboard V1 ATMega328P 20MHz

Raspberry Pi Zero 2W 1GHz

Quadruped Full Comparison

	M	1	
	Unitree A1	Petoi Bittle	Ratio
Cost	\$10,000 USD	\$299 USD	33x
Weight	12 kg	.29 kg	41x
Dimensions	.5 x .3 x .4 m	.2 x .11 x .11 m	2.5x
Degrees of Freedom (DoF)	12 (Leg: 3)	8 (Leg: 2)	1.5x
Battery Capacity	25.2V 4200mAh	7.4V 1000mAh	3x
Motor Resolution	.022°	1°	45x
IMU	Yes	Yes	NA
Motor Feedback	Yes	No	NA
Foot Pressure Sensor	Yes	No	NA
Lidar	Yes	No	NA
Computing	ARM Cortex-A72 2.5GHz	Nyboard V1 ATMega328P 20MHz	125x
Optional Additional Computing	NVIDIA TX2 1.3GHz	Raspberry Pi Zero 2W 1GHz 1.3x	

Demonstrate how existing state-of-the-art **imitation learning pipelines** can be **modified** and augmented to support **ultra-low-cost**, **constrained robot** platforms

Challenges

Observability

Computation

Controllability

Tiny Motion Imitation Pipeline

Tiny Motion Imitation Pipeline

Tiny Motion Imitation Pipeline

Quantized and Frozen Graph but without dimensionality reduction

Deployment

Video Demo

Current State-of-the-Art

Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,

Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, Gavriel State

NVIDIA {vmakoviychuk, lwawrzyniak, kellyg, michellel, kstorey, mmacklin, dhoeller, nrudin, aallshire, ahanda, gstate}@nvidia.com

Abstract

Isaac Gym offers a high performance learning platform to train policies for a wide variety of robotics tasks entirely on GPU. Both physics simulation and neural network policy training reside on GPU and communicate by directly passing data from physics buffers to PyTorch tensors without ever going through CPU bottlenecks. This leads to blazing fast training times for complex robotics tasks on a single GPU with 2-3 orders of magnitude improvements compared

Questions for Thought

- We rely heavily on simulation for training, but transferring these policies to the real world is still challenging. How big of a role do you think simulation can realistically play in training robots compared to real world training? What innovations might help close the sim2real gap?
- The locomotion skills in this paper are learned through imitation and reinforcement learning. Do you think techniques from general artificial intelligence like reasoning could complement these methods for robot training?
- Can you think of any other potential applications for capable yet affordable robots? What opportunities and risks might this create?

Part 2: RobotPerf

Our Team

Víctor Mayoral-Vilches

Juan Manuel Reina-Muñoz

Giulio Corradi

Yu-Shun Hsiao

Jason Jabbour

Gaurav Vikhe

Phillip B. Gibbons

Niladri Roy

Zishen Wan

Bakhshalipour

Sabrina M. Neuman

Brian Plancher

Smruti Panigrahi

Matthew Stewart

Stefan Rass

Carnegie Mellon University

JOHANNES KEPLER UNIVERSITÄT LINZ

Introduction

Motivation

Robotic Applications

Real-Time	Moore's Law &	Heterogeneous
Systems	Dennard Scaling	Hardware

ROS 2

Background

Related Work

RobotPerf Principles

RobotPerf Principles

Non-Functional Performance Testing

Performance Testing Types

Functional

Non-Functional

RobotPerf Principles

Non-Functional Performance Testing

Real-Time Metrics

Latency

Power

RobotPerf Principles

Non-Functional Performance Testing

Methodology Types

Grey Box Testing

Methodology Types

Black Box Testing

RobotPerf Principles

Non-Functional Performance Testing

Adaptability

Adaptability

RobotPerf Principles

Non-Functional Performance Testing

Adaptability

Reproducibility

RobotPerf Principles

RobotPerf Results

Benchmarks

Quantitative Approach to Hardware Selection

Representative Assessment of Heterogeneous Hardware

Assessment of Acceleration Benefits

Hardware Selection

○ [NO] (60W) NVIDIA AGX Orin Dev. Kit
○ [I7K] (95W) Intel i7-8700K
○ [I7H] (125W) Intel i7-12700H
○ [I5K] (125W) Intel i5-13600K
6

Representative Assessment

Representative Assessment

Acceleration Benefits

Thanks!

jasonjabbour@g.harvard.edu

Questions for Thought

- What's the importance of benchmarks? Can you think of some benchmarks that have helped move their field forward?
- Are there any specific robotic algorithms that should be incorporated into RobotPerf?
- Does RobotPerf miss or not take into consideration any aspects of the robotics pipeline that might be useful to study? What could be the next steps of RobotPerf?